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The analogue of acoustic absorption in the simple hopping model of Orwoll and Stockmayer is 
treated and the features emerging from the model discussed. The results are shown to be at variance 
with the experimental evidence and it seems unlikely that simple modifications on this or any other 
hopping model will produce the high frequency relaxational behaviour of dilute polymer solutions. 
Indirect support is therefore given to the idea that the motion of a polymer in solution, at least up to 
a frequency in the MHz region, is best described by the solution of a realistic diffusion equation in 
which the solvent is treated as a continuous medium. 

I N T R O D U C T I O N  

The dynamical properties of polymers at low frequencies are adequately accounted for by the Rouse-Zimm model. At 
higher frequencies deviations from the model occur, the explanation of which necessitates a more explicit treatment of the 
local conformational changes in the polymer molecule. 

Theoretical approaches to this problem may be divided into two categories. First, attempts to solve a diffusion equation 
which includes an intermonomer potential energy term; secondly, hopping models - -  attempts to represent the motion of 
the polymer as a series of discrete local transitions between conformational minima. The two methods are related to 
different physical ideas about the way a polymer moves in solution. The diffusion equation arises when the solvent is 
represented as a continuous medium interacting dynamically with the polymer only through a friction constant. Hopping 
would describe the situation where monomers rotate only when they can jump into an adjacent vacancy which has arisen 
in the solvent. Many well-known theories of liquid behaviour are based on such an idea. 

Since it is very difficult to decide on a priori grounds which of the two pictures agrees with the real situation, it is 
desirable to work out the observable consequences of each and to compare these with experiments. A simple hopping 
model which includes the essential features was introduced by Orwoll and Stockmayer 1. Here we attempt to calculate the 
relaxation of the energy stored in a chain which moves according to this model. The energy in the chain is unambiguously 
related to the statistical mechanics of the chain motion in a way that other experimentally measurable quantities, such as 
the net electric dipole moment, are not. Experimentally, a quantity closely related to the energy in the chain is thought to 
make an important contribution to the ultrasonic absorption signal. The observed signal in such experiments follows a 
single Debye-type relaxation at a frequency in the MHz region. The calculations show, however, that the analogue of the 
energetic part of the ultrasonic relaxation in the hopping model follows the Rouse relaxation spectrum, as does the 
relaxation of the displacement of the particles calculated in the original paper of Orwoll and Stockmayer. 

Acoustic analogue of  the Orwoll and Stockmayer model for a one-dimensional linear chain with correlations 
Let a one-dimensional linear chain comprise N + 1 beads which are indexed serially along the chain from 0 to N. 

Assuming constant bond lengths, the configuration of the chain is specified by the set of N scalars {al, a 2 . . . .  aN} where the 
'bond directions' a~ can take on only values of + 1 or - 1 depending on whether bead i + 1 is to the right or left of bead i. [If 
b is the bond length, ai=b-l(Xi--Xi_l)]. 

The chain configureation is made to vary in time by allowing beads to move one at a time and the restriction is made 
that bead i can move only if bonds i and i + 1 point in opposite directions, i.e. if ag = - a/+ 1. When bead i hops, the bond 
directions a 1 and ag+ 1 change to -a~ and -a~+ 1, respectively. 

As in the case of a linear Ising chain 2, the Hamiltonian of the system will be given by 

' ~ =  --EEGiai+ 1 (1) 
i 

where we have introduced correlations between adjacent bonds by assigning an energy E for each pair of consecutive 
bonds which point in opposite directions and an energy - E for each pair of adjacent bonds which point in the same 
direction. At equilibrium, the probability peq(al, a z .... aN) that the chain has the configuration {al, a 2 . . . .  ai, ai+ 1 . . . .  aN} is 
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proportional to the Boltzmann factor. Moreover, if o~,~(7~, a~ + t) denotes the probability per unit time that bead i flips, then 
the principle of microscopic reversibility requires: 

(Di(~rl, ~ i  + 1)Peq((71, t72 . . . .  (7i, f i + 1 " '"  G N ) = 6 0 i ( - - l T i ,  - - G  i+ l )Peq(~  l ' (72~ . . . - - G i ,  --O'i+ 1 . . . .  GIN), (2) 

Therefore co,(ag, ai+ ~) is proportional to 

e x p { ~ ( o i - 1  °i+ t q- (7fli+ 2)} 

Noting that even powers of a ~ u a l  one, series expansion of the exponential gives: 

(Di( f f  i, (7 i + l ) = ~ 1 "~ fl(T i - I a i + 1 ~(1 "~ f l f f  i a  i + 2 ) 

and 

(3) 

c°i( - ai, - (7i + 1) = 091(o'i + l, (7i) = 1_~-~(1 + ric h _ l o-~X 1 + fl(Ti + 1 (7i + 2 ) (4) 

where at is a proportionality constant and fl = tanh(E/k T). Since the transition probability is a property independent of the 
restrictions of equilibrium, equations (3) and (4) can be used for non-equilibrium situations. 

Let p({o-s], t) denote the probability that the chain has the configuration {a~, a2 .. . .  ai, a~+ t . . . .  as]  at time t. Then, the 
master equation for this model is: 

dP({o-S}'dt t ) - - ~ / {  coi((Ti' o-i+OP({(Tu}' t)-c°i(ai+ l' (Ti)P(T/{o-u}' t)} 

where ~ {(TN} is the resulting configuration after bead i has flipped, i.e.: 

{(7~}={a,, ~2 . . . .  o - , - , ,  ~ , + , ,  (7,, (7,+2 . . . .  (Ts} 

(5) 

(6) 

Multiplication of equation (5) by o-j and summation over all 2" possible configurations gives the differential equations 
for the average value of the bond directions: 

dq~ _ a 
dt 1--fl 2[2qi-(l +flXqi-l +qi+t)+fl(qi-2+qi+2)-fl((Ti-2(Ti-lo-i)+ 

2f l ( ,a,_ ,a ia,  +,  ) - f l ( ,a ia,+ , (7,+ 2 )  + f l 2 ( a l  - 2a i  - ,a ,+  , ) + 

/~2(~_,(7,+,(7~+2>_~2(~,_2o-~(7,+,>_~2(o-,_,~,o-,+2)} (7) 

where the brackets ( )  denote ensemble average and qi = (ai) .  Equation (7) is the same as equation (32) in Orwoll and 
Stockmayer's paper (with a = 0) and therefore their subsequent analysis applies. 

To obtain the two bond correlation functions, which describe whatever tendency on the average the pair of bonds o~ and 
at may have, to be correlated in direction at a particular instant (and hence the time dependence of the energy of the system) 
we perform multiplication of equation (5) by aj(7~ and summation over all possible configurations. That is: 

drj,, = _ Z {aja,c°i(ai, ai+ OP({°s}, t)--aj(Tlc°i((Ti+ ,, ai)p(Ti {as} , t)} 
dt i,j,z 

(8) 

where rj,t= (ffl~). Clearly ri,i= 1. 
Noting that the only non-vanishing terms in the summation are for i =j,  j -  1, I and 1 -1  and assuming translational 

invariance (i.e. ri =-rj,~ where h = l - j )  equation (8) can be rewritten as follows: 

dr l 2c~ . 
o 2 / - r l  +r2 +fl(1 --r  3 + (00010"20"3) -- <000" 1020"2 >) '}- fl2(<000"20"30"3 > -- (000l  0"30"3))} 

a t  = 1 p -  (9a) 

and h > 2  

drh ~ f l  dt - 1  2{--2rh+(l +fl)(rh+L +rh-t)--fl(rh+2+rh-2--(a°aW2fh+2)+2(f°fW2fh÷l) 

- ( ~ - ~ f ~ ( 7 2 ~ 7 h ) ) q - f l 2 ( ( G ~ ( 7 2 G 3 f h + 2 ~ + ( ( 7 ~ t 7 3 G h + ~ ) - ( G ~ G ~ G 3 o - h + 2 ) - ( ~ 7 ~ G 2 G 3 a h + ~ }  (9b) 
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The evaluation of the fourth order correlations cannot be made without approximation. Marsh 3 has given an 
expression for the general 'n-spin' correlation function for an Ising chain in equilibrium with an external field• Assuming 
that the field is the same at each spin we set S=  (o~)~q= (O)e q and R2= 1 - S  z. For the two and four spin correlations, 
Marsh's expression then reduces to: 

(aiai+l,)e q = S 2 + R232 (lOa) 

and 

(aiai+l~7~+~1+~2+~`~eq=~4-~-S2R2(fl~+fl~2+fl~`-fl~`+~2-fll2+~3Jt-~'+~z+~)+R4~ I1+1" (lOb) 

If S < 1 so that terms in S z and S* are negligible and R 2 ". 1, then: 

and 

(Oiffi+l,ai+l, +lzOi+l , +12 +l:,)eq ~ (f f iai+lt  +13)eq (11) 

This approximation is equivalent to the assumption (a~ai+t),,~"" ((~iOi+l)leq, since we also have (oia~+l),,  q'-' fl in this 
case. In fact, for zero-field equilibrium, the result is exact, namely: 

( (~ i(T i + 1 ) eq • • (zero-field equilibrium) 

(a ia i  +, )eq = f f  = (a,ai  +1 )'eq (12) 

A justification of the application of these formulae as approximations in non-equilibrium situations has been attempted by 
Orwoll and Stockmayer 1. We restrict their use to the reduction of the four 'spin' functions to two 'spin' functions, thereby 
hoping to minimize the effect of the error introduced by the approximation. 

Accordingly equations (9a) and (9b) reduce to: 

drt 
dt 

2~z 
_f12{(l_ + fl + fl2)rt - ( 1  + fl + flZ)r z -  fl(1 - r3)  } 1 

(13a) 

and (h > 2): 

dr. 
dt  - 1 ~ - { 2 ( l + f l + f l = ) r h - - ( l + 2 f l + f l 2 X r h + t + r " - ' ) + f l ( r h + 2 + r " - 2 ) }  (13b) 

Equations (13a) and (13b) can be rewritten as a single matrix equation as follows: 

d~zr-= {(1 + fl2)L 0 -[- f iL 1 }~-2"-}- tiP0 

where 

= 

r 1 

r 2 

'N- 

PO ~- 

/ 1  

-1 

0 

/o 

(14) 
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Lo~-- 

- 1  I 0 0 0 0 0 0 0 \  
1 

0 - 2  1 0 0 0 0 0 0 
1 - 2  1 0 0 0 0 0 

i . . . . . . . .  

0 0 0 0  0 1  - 2  1 

0 0 0 0  0 0  1 - 2  

L l ~  

/~ 1 1 - 1  0 0 0 0 . . . . . .  0 0 0 0 

2 - 2  2 - 1  0 0 0 . . . . . .  0 0 0 0 

1 2 - 2  2 - 1  0 0 . . . . . .  0 0 0 0 

0 - 1  2 - 2  2 - 1  0 . . . . . .  0 0 0 0 

• . , , . . . . . .  

~ i  0 0 0 0 0 0 . . . . . .  0 - 1  2 - 2  

0 0 0 0 0 0 . . . . . .  0 0 - 1  2 

0 0 0 0 0 0 . . . . . .  0 0 0 - 1  

0 0\  
0 0 

0 0 

0 0 

2_I/ 
- 2  2 

2 - 2  

25 
= 1 _ ~ t  (15) 

P 

the order of the matrices and vectors being N -  1. 
The equilibrium solution of equation (14) is r~ = fib. In the particular case, where rh(0 ) = fl~ and we neglect terms of order 

flo 2 [i.e rt(0 ) =flo and rh(0) = 0 for h > 2], and the bonds in the chain are not correlated at t = ~ (that is, fl = 0), it is possible to 
find an analytical solution of equation (14). Such a solution, as may readily be verified, is: 

rh(z) = flO{Ih_ t(2Z) -- l.(2z)}e- 2~ (h > 1) (16) 

where the I h are Bessel functions of imaginary argument, given by: 

Ih(X ) = i - hJh ( i x  ) (17) 

Although this is clearly not the most interesting case, it shows the sort of mathematics involved in the problem and 
resembles the case treated by Glauber 2. TO get a solution for the general problem, we will use perturbation theory. Assume 
we subject our system to a periodic temperature perturbation (for instance through the passage of an ultrasonic wave). The 
net result will be a deviation from equilibrium. That is, we put: 

J~ = flAy( 1 + be/"'), (I 8) 

-~ =~Av + (6flAve"°~)-0, (19) 

where~ is the response function, o9 the frequency of the perturbation, flAy the equilibrium value of the correlation, 6 is a 
measure of the intensity of the perturbation and~nv is the ( N - 1 )  dimensional vector whose nth component is flA~". 

Substitution of equations (18) and (19) in equation (14) and linearization of the resulting equation in fiflAv (which is a 
very good approximation) leads to: 

ko~ = {(1 + fl]v)L o + flAvL 1 ~ + {L 1 + 2flAvLO}-?Av +--Po (20) 

The first few equations for t h ,  r/2 etc. are irregular and the matrices are unsymmetrical. Specifically, t/t is to be 
determined, since it is essentially the relaxational specific heat and this is the quantity related to the ultrasonic absorption 
measurements. Clearly, the solution to this problem is mathematically more difficult than the one for the average value of 
the bond directions given by Orwoll and Stockmayer. 
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The eigenvalues and eigenfunctions of L o can be readily obtained. They are given by: 

COk=2(1--COS k), 

and ~k, the ( N -  1) dimensional vector whose nth component is: 

(21) 

~k,n = Ceik/2 COS k(n 1 )  (22) 

C being a normalization constant. So far we have only considered the case of a finite chain but the extension to an infinite 
one represents no problem. The range of'k values and the constant C depend on whether the chain is finite or infinite. In the 
former case 

2 n + l  
k = 2N - 17t (n = 0, 1, 2 . . . . .  N - 2) (23) 

2 
C1 n - - 1  

(2N - 1 )± 

Whereas in the latter k becomes a continuous variable in the interval [0, it] and: 

(24) 

2 
C i n f  = 1 

(2~)~- 

The eigenvectors ~k form a complete orthonormal set and hence we can expand ~ in terms of them: 

(25) 

k 
(26) 

for the finite chain and 

/t 

-4inr= j A(k~kdk 

0 

(27) 

for the infinite one. In what follows we will consider the case of a finite chain, bearing in mind that the extension to the 
infinite chain involves only the replacement of summations by integrals and of C~ by C~,f. We will also assume N to be very 
large to avoid treating the end-effects, but this represents no loss of generality and simplifies the mathematical treatment. 
Substitution of equations (26) in (20) and multiplication of the resulting equation by ¢~',, gives: 

~ ( ~k'.  ,~--'1~ k "}a ~""  {(L1 -~- 2flAvlz'0~Av -~--P0] 
(Ik'=lJAv~k ~i(.o_~_(l_~_fl2v)(Ok, ~ k "}- ico+(l +fl2v)OOg, (28) 

whe~  ~ the (N - 1)dimensional vector whose nth component" ~* is gk., and we have made use of the fact that Lo~ k = ~O~k 
and ~ , .  ~k = 6k,k" Performing the matrix operations, we obtain: 

(1-/3Av-- fl2Av + fl~v)COS ~ + cos3k ' -  flAvCOS-~ ~(2:A.vo--Z2/3~ +flAv-- _ 2ClflAvsin~ sink'~ake",'2cosk~, 
ak,=Cle_ik,  2 \ z. z J \  I*pAv--ZISAvCOSK / z z 

2co + 2(1 + 2flA v + fl2v) (1 -- cosk ' ) -  2flAv(1 -- cos2k') 

(29) 

Equation (29) has the form of a Fredholm's integral equation of the second kind with a separable kernel: 

b 

r,p = f (x )  + )oF(x)t G(y)q)(y)dy 
a 

(30) 

where 

~(x)=ax (3]) 
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2 3 x 3 x 2/TAr-- 2fl]v +/74~-- 1 
(1-- flA~-- flAv + flAv)COSz + (COS=x -- flA,COS=']( . ~2 ~ - 

z \ 2 2 J \  I+/JAv--2flA,COSX ] (  
f (x )  = Cle-i,,/2 ioo + 2(1 + 2/~v + fllvX1 - c o s x ) -  2/~Ad 1 - cos2x) - (32) 

'~ ~ f l a y  (33) 

• X • 

2C~sin~slnxe-'~/2 
F(x) =.  

zo9 + 2(1 + 2flA ~ + fl2vXl -- cosx)-- 2flA~(1 -- COS2Xi (34) 

The solution of (30) is4: 

G(y ) = e'y/2cos(y /2 ) (35) 

b 

2F(x) f G(y)f(y)d 9 

q)(x) = f (x)  -+ " b (36) 

1 - 2 f  F(x)G(x)dx 
a 

This expression would in principle give us the desired result for ~h after substitution in equation (26). However, we note 
that qi(o9) is given by (see equations 26 and 22): 

ik k 
q1(o9) = Cl~ake /¥os~ (37) 

and this fact makes it unnecessary to use equation (36). From equation (29), after multiplication by C~e~k'/2cosk'/2 and 
summation over k', we obtain: 

= 

X(k') 
Y I k ' ) J  

+ flay ito + V(k') J (38) 

where: 

~2 a 2k l" 3, k ,, 2k'~l'2flAv--2flaA~+j~AA, - 1'~ 
X(k)=(1--flAv--IJAv+.flAOcos }+tCOS}gcos2--pA,COS 2 ) t  l +flEv--2flA ~c°sk } (39) 

Y(k) = 2(1 + 2flA v + fl2vX 1 - cosk) - 2flAd 1 - cos2k) (40) 

Z(k) = sin2k (41) 

Apart from a proportionality constant (which we will call K1) the ultrasonic absorption 0 ~ / f  2 will be governed 5 by 
-r/l"(aJ)/a~ where ~/1" is the imaginary component of r/~. That is: 

~h"((o)- 
= - r , - - ( o  

{ ~ X(k) ] (  1 ~ ~ Z(k)Y(k) ] 

F ~ K  1 

~p~l- +/Sgv~oz+ Y2(kj~ +PAv e) ~ o o z +  y2(k);  

fl f v .  X(k)Y(k) ] ( ~  Z(k) } 
[ k t.o T - -  I, Ixl J ( " k "]- Y2(k) 

1 ~ ~, Z(k)Y(k) ]2 ~2 z(,c, Z(k) ]2 
(42) 
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Fiyure 1 Effect of the value of the correlation on the acoustic absorption for a fixed chain length (N = 51). A; flAv= 0; B, flA, = 0.5. Both curves have been 
normalized for t,) = 0. The frequency units are arbitrary A o = logmo, where tno is the frequency corresponding to the first Rouse mode for the case flA~ = 0 

RESULTS AND DISCUSSION 

For an infinite random chain, we obtain the following expression for the acoustic absorption: 

j sin2kdk 
f2  (co) = K l i,r kt(1 - cosk) 2 Jr- CO 2 

0 

(flAy=O) (43) 

It is clear that ~/f2__. ~ as ~o~0 in this case, which means that the main contribution to the acoustic absorption comes 
from the slowest modes and thus a Rouse-like behaviour is obtained. 

Computer calculations o f ~ / f  2 as given by (42) have been carried out for different chain lengths, (i.e. different molecular 
weight samples) and different values for the bond correlations. The results show an increase in the amplitude of the 
acoustic absorption with increasing m61ecular weight and also, for a fixed chain length, an increase in this amplitude with 
increasing bond correlations. Again, the main contribution to the acoustic absorption comes from the slowest modes and 
for the case flAv=0 the same Rouse-like behaviour is obtained. However, as the value of the correlation is increased, the 
relaxation is pushed to a lower frequency. This effect can be seen in Figure 1, where we have plotted the acoustic absorption 
~/.1.2 as a function of frequency for a chain having N = 5 1  and flAv=0 and flAv=0.5, respectively. 

Acoustic absorption experiments on dilute polystyrene solutions 6 have shown the existence of an almost ideal Debye- 
type relaxation in the lower MHz region which is molecular weight independent (at least for molecular weights above 
some critical value). For molecular weights of the order of 10 000, this relaxation takes place at a frequency about two 
decades higher than the observed Rouse-like viscoelastic relaxation in the same system. We therefore find that the results 
of the present model, where no such high frequency behaviour is obtained, are not able to explain the experimental facts. 

C O N C L U S I O N S  

The analogue of the ultrasonic energy absorption response function in the simple hopping model does not show high 
frequency behaviour of the type found experimentally. The relaxation is in fact dominated by a Rouse-like spectrum as are 
the viscosity analogues in the same model, which are related to (~ri). A more distinct high frequency feature can be 
produced by allowing a spectrum of hops of blocks of increasing size and gradually diminishing probability to take place. 
There is no simple physical idea underlying such a device in the way that the notion that a vacancy in the solvent leads to 
the idea of monomeric hops. Even if such a spectrum of hops is introduced, difficulties in producing the experimental 
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features of the viscoelast ic and  u l t rasonic  re laxa t ion  curves are still found. These difficulties are similar  to those discussed 
by Pugh  and Jones 7. The  f lat tening of the 1/3 vs. k curve which results from in t roduc ing  hops involving blocks of different 
sizes is s imilar  to tha t  p roduced  by in t roduc ing  a l inear  in ternal  viscosity te rm into the Langevin  equa t ion  which is the 
s tar t ing poin t  of the Rouse model.  Recent  work  s J0 has shown tha t  the qual i ta t ive  features observed exper imenta l ly  in the 
re laxa t ion  behav iour  of  po lymers  are r ep roduced  much more  na tura l ly  in the solut ions  of diffusion equat ions  with 
i n t e r m o n o m e r  ro ta t iona l  bar r ie r  type  potent ials .  The  results of the present  work  may  therefore be taken  as provid ing  
further indirect  conf i rmat ion  that  the mo t ion  of a po lymer  in solut ion,  at least up to a frequency ~ 10 v or  108 Hz is best 
t rea ted  from the po in t  of view of a realist ic diffusion equat ion.  
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